
REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 0704-0188 

Public reporting burden lor this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducinq this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
3>\ -ol'Zooo 

3. REPORT TYPE  AND DATES COVERED 

4. TITLE AND SUBTITLE 

4»A:PT'V£     CONTROL    AUH    M A V (Ox A TteH    O F 

A V -ro N CM OO J    Maß i L£     QO&PT S 
6. AUTHOR(S) 

t 

? Aou?   6A ubi &Ho 

5.  FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

b£?T.  of-   CoCtii'TiKJi. Z tie u/Mu ^/ST£*. 

(z^t-h   'Be A Co hi    Xr. 

8.  PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

P./t^Cf/LAH oppiYe/2." Tß-ft&r.A  HcMucc^Ai 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

LMu":<n / r€^I> 

13. ABSTRACT (Maximum 200 words) 

This grant was  used to  support  four different  lines 
of  research  in  the Neurobotics  Lab  at  Boston 
University:   Adaptive  control  of  a mobile  robot  using 
unsupervised neural  networks;   Sensor  Fusion  for 
localization of  a mobile  robot;   real-time visual 
tracking  and positioning;   sonar object 
recognition.   All   of  these projects  adhere  the 
Neurobotics  Lab's  goal   of  using neural  networks  and 
other biomimetic  approaches  for sensory processing 
and  control   in mobile  robotics. 

14 20000905 107 15. NUMBER OF PAGES 

I 5 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

0 K> C «-- 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

O^O 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

20. LIMITATION OF ABSTRACT 

OhlCL 
NSN 7540-01-280-5500 

miß qU&L&FZ IIJSPBGTED 4 

Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
2.8-102 ir/J^^ 



Final Report P. Gaudiano, PI 

Final Technical Report 
Young Investigator Award, ONR-N00014-96-1-0772 

Paolo Gaudiano, PI 

This is the final technical report for the Office of Naval Research Young Investigator Award, 
titled "Adaptive control and navigation of autonomous mobile robots." 

Final Period Report 

The final year of this project was primarily spent winding down sponsored research activities, as 
the grant was scheduled to expire on 30-04-1999 but was prolonged to 31-05-2000 on a no-cost 
extension. Having graduated several PhD students who received support on this grant, the grant 
research in the period from 01-09-1999 through 31-05-2000 focused on a final project involving the 
use of sonar echoes for recognition of objects. 

In collaboration with M. Ihsan Ecemis, who successfully completed and defended his Ph.D. 
dissertation this summer, we refined the sonar recognition system that was developed during 
earlier parts of the project. 

From a scientific standpoint, we developed more sophisticated software for pre-processing and 
classification of sonar echoes, achieving very impressive results. The sonar is able to recognize 
one of several trained objects, showing robust recognition with multiple objects even at different 
distances and aspects. 

As an attachment, we have enclosed a paper that will appear in the forthcoming conference 
"Sensor Fusion and Decentralized Control in Robotic Systems", part of SPIE's "Intelligent Systems 
for Advanced Manufacturing", to be held in Boston on 5-8 November, 2000. The paper describes 
some of the new methods we have devised to extract information from the echo which can be 
used for classification and recognition tasks. 

The system is able to recognize objects that appear very similar: we trained the system to 
recognize three different faces at a fixed distance, and even with only several seconds of training 
on each face, the system was able to recognize the faces with an accuracy of over 70 

The system's impressive performance has not gone unnoticed: in the final year of this grant 
we have received a grant from IS Robotics (Somerville, MA) to transfer some of this technology 
to ISR's mobile robotics platforms. Furthermore, a short segment on this work was featured on 
Robocritters, a documentary made by the British Broadcasting Corporation, which aired on the 
BBC with great success, and apparently also on the Learning Channel in the USA (neither the PI 
nor the Ph.D. student have the Learning Channel). 

The following publications supported by this grant have appeared in the period 9/1/99- 
5/31/00: 

• Ecemis, M.I. and Gaudiano, P. (2000). Object recognition system using sonar. Invited paper 
to appear in SPIE Sensor Fusion and Decentralized Control in Robotic Systems. Boston, MA, 
November 2000. 

• Chang, C. and Gaudiano, P. (2000). Biomimetic Robotics. 

• Ecemis, M. I. and Gaudiano, P. (1999). Object Recognition with Ultrasonic Sensors. 1999 
IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA). 
Monterey, CA, 250-255. 
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• Sahin, E. and Gaudiano, P. (1999). Development of a Visual Object Localization Module 
for Mobile Robots. Eurobot'99: Third European Workshop on Advanced Mobile Robots. Zurich, 
Switzerland, September 1999. 

Entire Performance Period 

This has been a very productive grant during its four-year period. The funding was used to 
create the Neurobotics Lab, a laboratory for the application of neural networks and other biomimetic 
techniques to perception and control for mobile robots. 

The Neurobotics Lab has generated a large number of publications and presentations, and, 
through collaborations with other academic units and with industry it has trained several gradu- 
ate students and achieved significant technology transfer. 

Even though the PI has terminated his appointment at Boston University, the research de- 
veloped under this grant has already had a significant impact that will undoubtedly outlast the 
original lab facility. 

The research performed in the Neurobotics Lab has covered several topics that we now sum- 
marize. 

Adaptive Control 

With Dr. Carolina Chang, now a Professor at the Universidad Simon Bolivar in Caracas, Venezuela, 
we developed a neural network that could learn without supervision to control a robot's move- 
ment while avoiding obstacles and approaching lights. 

The most significant innovation of this work was that our network requires no information 
about the robot's kinematics, or the nature and calibration of the robot's sensors. We were able 
to use exactly the same network to learn to control a Pioneer 1 (a medium-sized robot with five 
frontal and two lateral sonars) and a Khepera (a miniature robot with six frontal and two rear 
infrared proximity detectors). The ability to learn without supervision and without knowledge of 
the robot's kinematics and sensors makes our neural network very robust and flexible. 

This project gave rise to some technology transfer: the PI received support of the mediaCen- 
ter, GmbH, an industry-sponsored science center located in Friedrichshafen, Germany, to apply 
some of the technology developed under this grant. Specifically, we developed a simulated home 
environment in which the miniature mobile robot Khepera could navigate while performing sim- 
ple searching and surveillance tasks. All the low-level approach and avoidance behaviors on the 
Khepera were controlled using the neural networks described in earlier parts of this document. 
This project was highly successful as it led to the development of a unique simulated home envi- 
ronment (this was also the starting point of a project described later), and several useful technolo- 
gies for real-time tracking and control of the mobile robot Khepera. This collaboration significantly 
enhanced the productivity of the Neurobotics Lab as a whole by providing funds for two graduate 
research assistants, two robots and three computers. 

Sensor Fusion 

The raw sensory input available to a mobile robot suffers from a variety of shortcomings. Sensor 
integration can yield a percept more veridical than is available from any single sensor input. In 
this project, the PI collaborated with Siegfried Martens, using the fuzzy ARTMAP neural network 
to integrate sonar and visual sonar on a B14 mobile robot. The neural network learned in a self- 
supervised fashion to associate specific sensory inputs with a corresponding distance metric. Once 
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trained, the network yielded predictions of range to obstacles that are more accurate than those 
provided by either sensor type alone. This improvement in accuracy was shown to hold across all 
distances and angles of approach tested. 

Real-time Visual Tracking and Positioning 

This project, in collaboration with Erol Sahin and Bob Wagner, extended the lab's previous work 
on visual tracking and localization originally developed for the simulated house environment. 
The work proceeded along two main lines. E. Sahin developed a system for testing visual navi- 
gation algorithms in real time with the Khepera mobile robot. The system combines information 
from on-board and overhead cameras to obtain real-time quantitative measurements of the accu- 
racy of a localization algorithm. The algorithm makes it possible to visualize in real time on a 
computer screen the performance of any mapping and positioning algorithms, overlaying them 
on a live overhead camera image, thereby getting an immediate qualitative and quantitative mea- 
sure of the algorithm's performance. 

Using a similar tracking algorithm, Bob Wagner has collaborated over the course of three sum- 
mers with Alan Schultz of the Naval Research Laboratory to develop a real-time tracking system 
for B-14 and Nomad robots with pan-tilt cameras. This work may be extended in the future to 
perform face tracking. 

Sonar Object Recognition 

The last project, which was already described in the first section of this report, was begun in 
collaboration with Bill Streilein. For the project has developed a biologically-inspired sonar sensor. 
It is known that bats and dolphins can use sonar for impressive recognition and localization tasks. 
We devised a way of recognizing objects using a neural network and a standard Polaroid sonar. 
With this system we were able to categorize a variety of typical indoor objects (chair, wall, box, 
trash can, etc.) with high accuracy independently of object distance and orientation. 

Publications: Entire Period 

1. Ecemis, M.I. and Gaudiano, P. (2000). Object recognition system using sonar. Invited paper 
to appear in SPIE Sensor Fusion and Decentralized Control in Robotic Systems. Boston, MA, 
November 2000. 

2. Chang, C. and Gaudiano, P., Editors (2000). Special Issue on Biomimetic Robotics, 30. 

3. Ecemis, M. I. and Gaudiano, P. (1999). Object Recognition with Ultrasonic Sensors. 1999 
IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA). 
Monterey, CA, 250-255. 

4. Sahin, E. and Gaudiano, P. (1999). Development of a Visual Object Localization Module 
for Mobile Robots. Eurobot'99: Third European Workshop on Advanced Mobile Robots. Zurich, 
Switzerland, September 1999. 

5. S. Martens, G. A. Carpenter and P. Gaudiano (1998). Neural network sensor fusion for spatial 
visualization. SPIE Conference on Sensor Fusion and Decentralized Control in Robotic Systems. 
SPIE:3523,100-111. 
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6. E. Sahin and P. Gaudiano (1998). Mobile robot range sensing through visual looming. Pro- 
ceedings of the International Symposium on Computational Intelligence in Robotics and Automation 
(CIRA), 370-375. Gaithesburg, MD, September 1998. 

7. S. Martens, P. Gaudiano and G. A. Carpenter (1998). Mobile robot sensor integration with 
fuzzy ARTMAP. Proceedings of the International Symposium on Computational Intelligence in 
Robotics and Automation (CIRA), 307-312. Gaithesburg, MD, September 1998. 

8. W. W. Srreilein, P. Gaudiano and G. A. Carpenter (1998). A neural network for object recog- 
nition through sonar. Proceedings of the International Symposium on Computational Intelligence 
in Robotics and Automation (CIRA), 271-276. Gaithesburg, MD, September 1998. 

9. E. Sahin and P. Gaudiano (1998). Visual Looming as a range sensor for mobile robots. Pro- 
ceedings of the Fifth International Conference on Simulation of Adaptive Behavior, 114-119. Zurich, 
Switzerland, August 1998. 

10. Gaudiano P., Przybyszewski, A.W., van Wezel, R.J.A., van de Grind, W.A. (1998). Spatial 
Asymmetries in Cat Retinal Ganglion Cell Responses. Biological Cybernetics, 79,151-159. 

11. Chang, C. and Gaudiano, P. (1998). Application of biological learning theories to mobile 
robot avoidance and approach behaviors. Journal of Complex Systems, 1, 79-114. 

12. P. Gaudiano and C. Chang (1997). Adaptive obstacle avoidance with a neural network for 
operant conditioning: experiments with real robots. IEEE International Symposium on Com- 
putational Intelligence in Robotics and Automation, 13-18. Monterey, CA, July 1997. 

13. C. Chang and P. Gaudiano (1997). A neural network model of avoidance and approach 
behaviors for mobile robots. World Multiconference on Systemics, Cybernetics and Informatics. 
Caracas, Venezuela, July 1997. 

14. Chang C. and Gaudiano P. (1997). Neural competitive maps for reactive and adaptive navi- 
gation. Proceedings of the 2nd International Conference on Computational Intelligence and Neuro- 
science, 19-23. Research Triangle Park, North Carolina, March 1997. 

15. Gaudiano P. (1997). Being in the Right Place at the Right Time. Synthese, 112,125-134. 

16. Gaudiano P., Guenther F.H., Zalama, E. (1997). The Neural Dynamics Approach to Sensory- 
Motor Control: Overview and Recent Applications in Mobile Robot Control and Speech 
Production. In van der Smagt, P. and Omidvar, O. (Eds.), Neural Systems for Robotics. San 
Diego: Academic Press. Ch.6,153-194. 

PI Presentations: Entire Period 

1. March 5,1999: "Neurobotics Lab research: Learning, vision and sonar recognition, with mo- 
bile robots." Invited talk, Fourth International Workshop on Neural Networks in Applications, 
Magdeburg University, Germany. 

2. March 3,1999: "Neurobotics Lab research: application of learning theories to mobile robot 
navigation." Invited colloquium, University of Ilmenau, Germany. 

3. July 10,1998: "An overview of research in the Neurobotics Lab." Invited colloquium, Navy 
Center for Applied Research in Artificial Intelligence, Naval Research Laboratory, Alexan- 
dria, VA. 
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4. May 7,1998: "An overview of the Neural Dynamics Approach." Invited colloquium, Center 
for Neuro-Mimetic Systems, Swiss Federal Institute of Technology, Lausanne, Switzerland. 

5. April 29,1998: "Sensor fusion for robot localization with an ARTMAP neural network." In- 
vited seminar, Department of Neural Information Processing, University of Ulm, Germany. 

6. April 27, 1998: "The importance of sensory-motor coordination: some examples from the 
Neurobotics Lab." Brown Bag Colloquium Series, Artificial Intelligence Laboratory, Univer- 
sity of Zurich, Switzerland. 

7. April 24,1998: "An overview of research in the Neurobotics Lab: mobile robot applications 
in vision, localization and sonar object recognition." Invited seminar, Institute of Robotics 
and System Dynamics, German Aerospace Center, Wessling (Munich), Germany. 

8. April 23, 1998: "Mobile robot approach and avoidance behaviors with a model of classical 
and operant conditioning." Invited seminar, Department of Psychobiology, University of 
Geneva, Switzerland. 

9. April 3,1998: "A neural network that learns approach and avoidance behaviors with a mo- 
bile robot." Invited colloquium, Department of Computer Science, Swiss Federal Institute of 
Technology, Lausanne, Switzerland. 

10. March 24,1998: "Apprendimento, Controllo e Visione: Applicazioni Biologiche, Psicologiche 
e Tecnologiche della Dinamica Neurale" (Learning, control and vision: biological, psychologi- 
cal and technological applications of Neural Dynamics). Invited seminar, Istituto San Raffaele, 
Department of Biotechnology, Milan, Italy. 

11. March 23 and 24,1998: "Introduction to Neural Networks." Four-hour lecture series for un- 
dergraduate students. Department of Cognitive Sciences, Istituto San Raffaele, Department 
of Cognitive Sciences, Milan, Italy. 

12. March 17, 1998: " An overview of the Neurobotics Lab: perception, learning and control 
with mobile robots." Invited colloquium, Center for Neuro-Mimetic Systems, Swiss Federal 
Institute of Technology, Lausanne, Switzerland. 

13. February 17, 1998: "Elaborazione di pattern visivi ed ultrasonici per robot mobili" (Visual 
and ultrasonic pattern processing for mobile robots). Invited seminar, University of Parma, 
Italy. 

14. February 5,1998: "Reti neurali non supervisionate per il controllo adattivo di robot mobili" 
(Unsupervised neural networks for adaptive control of mobile robots). Invited seminar, Uni- 
versity of Palermo, Italy. 

15. December 10, 1997: "Introduzione alia neurobotica: controllo visivo, localizzazione e ri- 
conoscimento di immagini ultrasoniche con un robot mobile" (Introduction to Neurobotics: 
visual control, localization, and sonar pattern recognition with a mobile robot). Invited sem- 
inar, DIST, University of Genova, Italy. 

16. December 3, 1997: "Applicazione di una rete neurale per l'apprendimento classico al con- 
trollo di un robot mobile" (Mobile robot control with a neural network model of classical 
and operant conditioning). Invited seminar, DIST, University of Genova, Italy. 
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17. January 28, 1997: "Adaptation, gain control and retinal processing." Two-hour lecture, 
Boston University Department of Cognitive and Neural Systems graduate course in vision. 

18. November 25, 1996: "Neural networks for adaptive and reactive navigation with wheeled 
mobile robots." Colloquium in the Department of Computer Science, Colorado State Uni- 
versity. Ft. Collins, CO. 

19. November 22, 1996: "Computational neural models for mobile robot control and naviga- 
tion." Colloquium at the Center for Robotics and Intelligent Systems, Colorado School of 
Mines. Golden, CO. 

20. November 21,1996: "Application of biological neural networks to mobile robot control and 
navigation." Colloquium at the University of Colorado, Department of Computer Science. 
Boulder, CO. 

21. October 31,1996: "Light and dark adaptation: psychophysics, physiology, and theory." In- 
vited lecture, Boston University CNS Advanced Vision Seminar, Boston, MA. 

22. July 1, 1996: "Applying neural networks to the control and navigation of mobile robots." 
Colloquium at the Swiss Federal Institute of Technology. Lausanne, Switzerland. 

23. June 26, 1996: "Neural networks for content-based storage and retrieval of images in on- 
line databases." Invited symposium talk, Second Bodensee Symposium on Multimedia & 
Online. Friedrichshafen, Germany. 



Object recognition system using sonar 

M. Ihsan Ecemi§ and Paolo Gaudiano 

Boston University Neurobotics Laboratory 
Dept. of Cognitive and Neural Systems 
677 Beacon St., Boston MA 02215 USA 

ABSTRACT 

Sonar is used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range- 
finding applications do not exploit the rich information present in sonar echoes. In addition, mobile robots need 
robust object recognition systems. The ability to "see" with sound has long been an intriguing concept. Certain 
animals, such as bats and dolphins, are able to recognize the shape and nature of objects and to navigate using 
ultrasound. This work aims to set up and develop hardware and software components of an object recognition 
system using ultrasonic sensors of the type commonly found on mobile robots. Results demonstrate that sonar can 
be used as a low-cost, low-computation sensor for real time object recognition tasks on mobile robots. This system 
differs from all previous approaches in its simplicity, robustness, speed and low cost. 

Keywords: Object recognition, sonar, robots, ARTMAP. 

1. INTRODUCTION 

Recently, our group introduced a novel system for recognizing objects using the information extracted from sonar 
echoes.1,2 The system we presented uses readily available and inexpensive hardware. Our work was based on the 
observation that animals such as bats and dolphins can perform remarkable sensory feats using ultrasound signals.3'4 

In contrast, typical robotics applications only use sonar as a range finder, measuring the time-of-flight of the leading 
edge of the ultrasonic echo to determine the distance to the object that reflected the echo.5,6 

In our first study we used a Fuzzy ARTMAP neural network7 to classify echoes from five objects placed at various 
distances from the sonar. We chose ARTMAP because of its speed, its ability to learn incrementally and its proven 
performance on a variety of real-world pattern recognition problems. For a description of Fuzzy ARTMAP please 
refer to the original publication7 or our earlier article.1 

Our initial results were very encouraging: the recognition system was able to perform with an accuracy as high 
as 96%.1,8 The power spectral density (PSD) was then used as input to the Fuzzy ARTMAP neural network. 
Later we increased processing speed and flexibility in the data pre-processing scheme and tested an alternative way 
of extracting information from each echo: the envelope of the echo in the time domain rather than its frequency 
content.2'9 In this article we present a systematic study of the system that confirms our previous findings about the 
value of sonar as a sensor for object recognition. 

The remainder of this article is organized as follows: Section 2 describes the system, including the hardware and 
software components. Section 3 describes the results. The article closes with a short discussion of the results. 

2. DATA COLLECTION AND PROCESSING 

The hardware system consists of an instrument-grade electrostatic Polaroid transducer, a Polaroid ranging circuit 
board (series #6500), and a data acquisition board that can operate under the LINUX operating system (DAS16-M1, 
Computer Boards, Inc., with a LINUX driver written by Warren Jasper of North Carolina State University). 

For all results reported here, the sonar module was placed on a movable cart, at approximately the same height 
as the stand upon which each object was placed. Figure 1(a) shows the sonar setup and a 1-gallon plastic water 
bottle as a target object. The distance to each object was measured manually and later confirmed directly from the 
sonar echoes. 

Further author information:    M.I.E.:    E-mail:    ecemis@cns.bu.edu;   P.G.:    E-mail:    gaudiano@cns.bu.edu;   Web site: 
http://neurobotics.bu.edu. 
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Figure 1. (a) The sonar setup in front of the stand upon which a 1-gallon water bottle is placed, (b) Typical sonar 
echo after application of the digital bandpass filter. The vertical dashed lines demarcate the portion of the echo used 
for calculating the PSD function, as described in the text. 

Each echo is sampled at a frequency of 500kHz. The raw echo is processed with a digital bandpass filter with cutoff 
frequencies at 15kHz and 93kHz. The filter is implemented by calculating the inverse Fast Fourier Transform (FFT) 
of an ideal frequency response (with an amplitude of 1.0 in the desired range and 0.0 elsewhere). A Hamming window 
is then applied to the inverse FFT to restrict the temporal extent of the filter's impulse response. The amplitude of 
the impulse response is normalized and truncated to 255 points. This impulse response is then convolved with the 
echo. 

Lowpass or bandpass filters are commonly used in analog-to-digital conversion processes in order to eliminate 
unwanted frequency components in the source signal. In the current application, the filter reduces noise present 
in the signal before the echo arrives. This makes the detection of the echo (identification of the exact onset time) 
highly reproducible; with filtering the system achieved an accuracy of 1 data point (0.002msec). By removing the 
low-frequency components of the echo, the resulting signal is insensitive to 60Hz line noise and to overall fluctuations 
that occur for example when the battery that triggers the sonar is running low. 

Figure 1(b) shows a sample filtered echo returned by a 1-gal plastic bottle located 100cm in front of the sonar. 
The vertical lines demarcate the data extracted for calculation of the PSD function, as described below. For the 
envelope extraction, the data are truncated closer to the echo onset, as described later. 

2.1.  Extracting Frequency Information 

For the results presented in this work, the PSD is calculated using the method of Welch, an approach that combines 
averaging and windowing. Specifically, we used 18 Hamming windows of 256 points each, with an overlap of 90% 
between adjacent windows, covering a total of 698 points, which corresponds to 1.4msec of data— or to approximately 
24cm in round-trip distance in space. The PSD is calculated by summing the FFT of all 18 windows and dividing 
the total by 18. 

There is a trade-off between the resolution of the estimate and its accuracy. Using a larger FFT window decreases 
the width of the frequency bins, increasing the resolution of the transform. On the other hand, a smaller FFT window 
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Figure 2.   Average (a) PSD and (b) envelope function calculated from 50 echos reflected by the 1-gallon plastic 
water bottle at a distance of 100cm from the sonar. Error bars show the variance in the 50 measurements. 

yields larger frequency bins, effectively averaging nearby bins. The outcome is lower spectral resolution and higher 
energy accuracy. 256-point Hamming windows are found to be adequate for object recognition purposes. The choice 
of 90% overlapping windows (instead of the standard 50% overlap) was not crucial for the system performance. 

The 256-point Hamming windows yield a resolution of 500kHz/256=l,953Hz. Each PSD vector is truncated to 
the 40 elements in the frequency range [15,625Hz-91,797Hz], reflecting the characteristics of the band-pass filter. 
The 40-D vector is used as the input vector for the classifier. 

The solid line in Fig. 2(a) illustrates the average PSD obtained from the echo of the 1-gal plastic bottle located 
at a distance of 100cm from the sonar. Each point along the solid line is the average of 50 measurements (note that 
18 Hamming windows are averaged for each of these measurements). The variance in the 50 measurements is shown 
by error bars. This averaging was done to test the repeatability of the PSD function for a given object at a given 
distance and aspect. Our results demonstrate that PSD functions are highly repeatable for the same object at the 
same distance and aspect (notice the low variance in Fig. 2(a)), though they can change significantly as the object 
is moved or rotated relative to the sonar (not shown here). 

2.2. Envelope Function 

In this work, we extend our prior research by using time-domain information as input to the classifier, and comparing 
the recognition performance of the time-domain and frequency-domain methods. In particular, we decided to use 
the shape of the echo waveform (amplitude modulation of the incoming signal) as input to the classifier for the 
time domain analysis. The high precision with which we can locate the onset of the echo (1 data point accuracy, 
corresponding to 2 x 10~6 sec) suggested that shifting in the time domain would not be a problem. If the onset of the 
echo can not be calculated precisely, the envelope function may not be distance invariant unless used in conjunction 
with other cues. 

Each envelope function is calculated as follows: Starting 30 data points (corresponding to 0.06msec) prior to the 
echo onset, the code finds the maximum value in each of 60 non-overlapping and contiguous windows of 12 data 
points each. Since the sampling rate is 10 times higher than the carrier frequency, the processed echo reaches a local 



maximum approximately every 10 data points. Twelve data points are found to represent the envelope function 
adequately. This procedure is very fast and effectively performs down-sampling and half-wave rectification of the 
original waveform. 

Figure 2(b) shows the average and variance of 50 echoes from the 1-gal plastic bottle located at a distance of 
100cm from the sonar. The low variance demonstrates that envelope functions are highly repeatable for the same 
object at the same distance and aspect, though they can change significantly as the object is moved or rotated 
relative to the sonar. 

The entire envelope function consists of 60 points spanning 720/500kHz=1.44msec, which corresponds to a spatial 
range of about 25cm from the front edge of the object. The envelope function is passed as a 60-D input vector to 
the classifier. Please note that distance information is not passed to the neural network implicitly or explicitly: all 
inputs from a given object are classified to the same output node. As described in the next section, classification is 
always better with the envelope than with the PSD. 

3.  RESULTS 

We performed two experiments to determine the accuracy that can be achieved in recognizing an object independent 
of its distance from the sonar. Performance of the two methods described in the previous section are compared in 
these experiments. 

3.1. Distance Generalization Experiment 

The goal of the first experiment is to show that the system is able to recognize objects using ultrasonic echoes. The 
tests not only measure system performance when recognizing objects at distances presented during training, but 
determine how well the system is able to generalize recognizing objects at distances not seen during training. 

We collected echoes from four different objects: a 1-liter plastic water bottle, a metal trash can, a styrofoam sheet 
measuring approximately 34x63cm, and a lego wall measuring approximately 38x10cm. For each object we collected 
50 echoes at 11 distances ranging from 50cm to 150cm in 10cm increments. In addition we collected 50 "distractor" 
echoes from two other objects (a 1-gallon plastic water bottle and a cardboard box) at 100cm only. If there were no 
distractors, a classifier which randomly selects an object during testing could have an accuracy of 100/4=25%. The 
distractors decrease "chance performance" further to 100/6ä;16.7%. 

First, the fuzzy ARTMAP neural network was trained using a randomly selected subset of five processed echoes 
from each of the four main objects at 90cm, plus five randomly selected echoes from the two "distractor" objects at 
100cm. For each training input vector, the desired output class was set to one of six nodes to indicate which object 
was the correct response. 

Learning was set to a single epoch (fast learning mode) with a vigilance level of 0.95. Because ARTMAP is 
sometimes sensitive to the order of input presentation in fast learning mode, we repeated each experiment 10 times 
(each time drawing a different random set of 5 processed echoes for each object) and report the average results. 
However, we found that there was little variance across individual experiments. 

Testing was performed only for the four main objects, using the remaining 45 echoes from the distance of 90cm 
and all 50 echoes from all other distances, i.e., 50, 60, 70, 80, 100, 110, 120, 130, 140 and 150cm. Ignoring the 
distractors, the neural network was thus trained with only approximately 0.9% of the data. Note that none of the 
training echoes was used for testing. 

Figure 3(a) shows percent accuracy (across all four objects) as a function of distance for this experiment. The 
solid line with circles shows the average results of 10 ARTMAPs using the 60-D envelope function as input, while the 
dashed line with squares shows the average results using the 40-D PSD function as input. The error bars in Fig. 3(a) 
represent the variance in the 10 experiments. Several points merit discussion. 

It is clear that the network trained with the envelope function performs better than the network trained with 
the PSD at all distances. Both schemes work best in the vicinity of the trained distance (90cm) and their accuracy 
degrades gradually when the object is moved away to "unseen" ranges. The envelope function method yields 100% 
accuracy even at 100cm even though the network was not trained with any echoes at that distance. This kind of 
distance dependence in performance is expected because echoes change dramatically with the distance between the 
sonar and the object that reflected the ultrasound. 
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Figure 3. Average recognition accuracy as a function of distance using the envelope (solid line with circles) or PSD 
(dashed line with squares) as input vectors, (a) The network is trained only at 90cm. (b) The network is trained at 
80, 90 and 100cm. 

Next, ARTMAP was trained using a randomly selected subset of five processed echoes from each of the four main 
objects at distances of 80, 90, and 100cm, plus five randomly selected echoes from the two "distractor" objects at 
100cm. Learning occurred in a single epoch (fast learning mode) with a vigilance level of 0.95. 

Testing was performed only for the four main objects, using the remaining 45 echoes from the distances of 80, 
90 and 100cm, and all 50 echoes from the distances of 50, 60, 70, 110, 120, 130, 140 and 150cm. Thus, ignoring the 
distractors, the neural network was trained with only approximately 2.7% of the data. None of the training data 
was used for testing. 

Figure 3(b) shows the results of this experiment in terms of percent accuracy (across all four objects) as a function 
of distance. The solid line with circles shows the average results of 10 ARTMAPs using the envelope function as 
input, while the dashed line with squares shows the average results using the PSD function as input. The error bars 
represent the variance in the 10 experiments. 

The envelope function method performs better than the PSD method at all distances except at 70cm. As in 
the first experiment, the envelope function method has an accuracy of 100% at an unseen distance (110cm). The 
performance of both schemes was equal or better at all distances compared to the previous case when the network 
was trained only at 90cm. The results show that training at 80 and 100cm increased the accuracy of the network 
at novel distances (e.g., 130cm) even though no training data from this distance was provided to the network. In 
summary, one should collect echoes at different distances to improve distance generalization. 

Finally, ARTMAP was trained using a randomly selected subset of five processed echoes from each of the four main 
objects at distances of 50, 70, 90, 110, 130 and 150cm, plus five randomly selected echoes from the two "distractor" 
objects at 100cm. Learning again occurred in a single epoch (fast learning mode) with a vigilance level of 0.95. Each 
experiment was repeated 10 times (each time drawing a different random set of five processed echoes for each object) 
and the the average results are reported. 

Testing was performed only for the four main objects, using the remaining 45 echoes from the distances of 50, 
70, 90, 110, 130 and 150cm, and all 50 echoes from the distances of 60, 80, 100, 120 and 140cm (the neural network 
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Figure 4. Average recognition accuracy as a function of distance using the envelope function (solid line with circles) 
or the PSD (dashed line with squares) as input vectors. The network is trained at 50, 70, 90, 110, 130 and 150cm. 

was thus trained with only approximately 5.5% of the data). None of the training echoes was used for testing. 

Figure 4 shows the results of this experiment in terms of percent accuracy (across all four objects) as a function 
of distance. The solid line with circles shows the average results of 10 ARTMAPs using the 60-D envelope function 
as input, while the dashed line with squares shows the average results using the 40-D PSD function as input. The 
error bars represent the variance in the 10 experiments. Several points merit discussion. 

First of all, the envelope function method yields better results than the PSD method once again, consistent with 
results of the previous experiments. The envelope function method yields 100% recognition at all the distances on 
which it was trained, as well as for two of the distances on which it was not trained (100cm and 120cm). Performance 
was at or above 90% at all tested distances. The PSD function also yields 100% accuracy at those distances on which 
it was trained, but performance is considerably worse at untrained distances. 

The performance of both schemes improved at all distances (seen and unseen) compared to the previous cases 
when the network was trained at only 90cm or at 80, 90 and 100cm. Another interesting observation is that both 
the envelope function and the PSD methods yield better results and smaller untrained distances. It has been verified 
informally that this peculiar behavior is the result of an automatic gain mechanism of the Polaroid ranging module, 
which increases the gain of the receiver in several discrete steps over time to overcome the dissipation of the ultrasonic 
wave as it travels through the air. 

These results confirm the assertion that ultrasonic echoes provide some information about the objects from which 
they are reflected. From a practical point of view, this suggests that, using the envelope function, it is sufficient to 
train the object recognition system every 20cm or so, with only a few returns at each distance. With a sonar firing 
every 100msec, this means that a robot approaching an object head-on can quickly learn to classify the object. 

3.2.  Object Recognition at Varying Aspects 

One important restriction of the results in the previous section is that they are based on the object "being "viewed" 
from a single angle.  Given the directional nature of acoustic waveforms, one can expect dramatic changes in the 
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Figure 5.  Recognition accuracy as a function of training set size for all five objects using the envelope (solid line 
with circles) or PSD (dashed line with square) function as input. 

PSD and envelope functions as objects are rotated by different angles. Informal observations showed that rotations 
as little as 5 deg appreciably change the echoes. 

In this article we tested object recognition under a fairly unconstrained configuration meant to imitate what might 
happen with a mobile robot. The sonar was mounted on a rolling cart and could thus be moved relative to each 
object. For this experiment we used five objects: a 1-gal plastic bottle, a cardboard box measuring 15x25x20cm, a 
styrofoam sheet measuring approximately 34x63cm, a lego wall measuring approximately 38x10cm, and a bucket-like 
box (the lego bucket) measuring approximately 18x18x25cm. 

For each object, at the start of data collection the cart was moved back-and-forth across angles of +/- 45-deg 
and distances ranging between about 75cm and 130cm from the object. Because of the weight of the cart, the wheel 
configuration, and human error, the sonar was not always pointing directly at the object. Nevertheless, this kind 
of "noise" was left in the data sets. This experiment was meant to replicate a scenario in which a robot is moving 
around an object. 

Data collection for each object lasted about 20 seconds, collecting one sonar echo every 100msec or so, for a total 
of 200 echoes for each object. During this time the cart was moved from one extreme to the other approximately 5 
times. 

Training was performed using anywhere between 5 and 100 randomly chosen echoes (out of a total of 200) for 
each object. The purpose of this experiment was to determine the least number of "views" the system needed to 
sample in order to recognize objects reliably in their next encounter. Testing only used the echoes that were not seen 
during training. ARTMAP vigilance was set to 0.9, training lasted one epoch (fast learning), and each experiment 
was repeated ten times with ten different random seeds. Again, the results were very stable across experiments. 

Figure 5 shows recognition accuracy as a function of training set size (out of 200). As before, the envelope function 
results are shown as a solid line, and PSD results with a dashed line, while the variances are shown by the error bars. 
Two points are important. First, the envelope function clearly outperforms the PSD, in most cases nearly doubling 
the accuracy of recognition.  Second, even in this relatively unconstrained case, the classifier performs remarkably 



well, achieving an overall recognition accuracy of over 55% with only 5 training vectors per object (2.5% of the data 
set), and nearly 90% accuracy with 100 training vectors per object (50% of the data set). 

It is also interesting to consider the efficiency of the Fuzzy ARTMAP neural network. When 40 envelope vectors 
per object are used for training (20% of the data) and vigilance is set to 0.9, ARTMAP creates a total of 110 category 
nodes to classify all five objects at all distances and angles, achieving an overall accuracy of 82%. We also tried 
varying the vigilance parameter but found the results to vary only slightly. 

4. CONCLUSIONS 

We have presented two simple experiments to show that the sonar system described in this work is able to recognize 
objects using ultrasonic echoes. The first experiment dealt with the distance generalization capabilities of the system. 
ARTMAP was trained at certain distances and its performance at untrained distances was examined. The second 
experiment imitated a robot moving around an object so that the sonar system could sample different aspects of the 
objects. The envelope function method outperformed the PSD method in both experiments. 

The results strengthen the claim that sonar can be used as an effective sensor for object recognition. Our system 
can easily work in real time, making it possible to sample, process and classify each echo several times per second. 
Clearly, there are many ways in which we could try to improve our results, for instance by adjusting the pre-processing 
scheme, using a different classification method, or collecting larger data sets. We could also increase efficiency by 
using dedicated hardware for some of the pre-processing. However, we feel that the simplicity and robustness of this 
system are part of its appeal. 

This is not the first proposal for the use of sonar for object recognition tasks. Kleeman and Kuc10 used a 
sonar array for classification of multiple targets into four reflector types (planes, corners, edges, and unknown), 
by combining the ranging information from two transmitters and two receivers. Canhui and Regtien11 used three 
piezoelectric transducers to distinguish different objects which have the same area of reflection based on comparing 
the acoustic characteristics of the returns. 

Sillitoe et al.12 used a radial basis function neural network to recognize corners, poles, and other shapes typically 
found in indoor environment using a bistatic sonar array (a bistatic sonar is one in which the transmitter is separate 
from one or more receivers). Sobral et al.13 performed recognition of simple objects by generating transfer functions 
or impulse responses from the envelope of the sonar echo of each of four objects at eight orientations, then using 
regression to find the best matching object for a given novel input vector (i.e., an unknown object). 

Harper and McKerrow14 used a continuously transmitted frequency modulated (CTFM) sonar. Echoes collected 
by a second transducer were demodulated with the transmitted signal to produce audio tones proportional to the 
target range. They used an artificial neural network to classify the return spectra in order to recognize plants. All 
of these approaches, however, utilize specialized hardware and are thus not easy to replicate. 

Our goal eventually is to migrate the entire system on-board one of our robots. So far we have worked with a 
stand-alone sonar because of our frequent need to modify the setup, but all the components could easily be placed 
inside any robot with sonar sensors and an on-board PC. We have undertaken such a project in collaboration with 
IS Robotics (Somerville, MA; www.isr.com). 

In the future, it might be necessary to combine this system with other sensor systems such as vision and laser 
range finders. In the long term, the intention is to develop a system that allows the robot to recognize several objects 
in arbitrary locations while moving autonomously through an unstructured environment. 
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